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ABSTRACT

We investigate the impacts of objective functions on the performance
of deep-learning-based prostate magnetic resonance image segmen-
tation. To this end, we first develop a baseline convolutional neural
network (BCNN) for the prostate image segmentation, which con-
sists of encoding, bridge, decoding, and classification modules. In
the BCNN, we use 3D convolutional layers to consider volumetric
information. Also, we adopt the residual feature forwarding and in-
termediate feature propagation techniques to make the BCNN reli-
ably trainable for various objective functions. We compare six ob-
jective functions: Hamming distance, Euclidean distance, Jaccard
index, dice coefficient, cosine similarity, and cross entropy. Experi-
mental results on the PROMISE12 dataset demonstrate that the co-
sine similarity provides the best segmentation performance, whereas
the cross entropy performs the worst.

Index Terms— Medical image segmentation, prostate segmen-
tation, 3D convolutional neural networks, and objective functions

1. INTRODUCTION

In the prostate magnetic resonance (MR) image segmentation,
prostate regions are segmented out from a 3D MR image, which
consists of 2D image slices. The volume of a prostate can be esti-
mated from the 3D segmentation result, which can be then used to
assist the diagnosis of prostatism. A human expert can delineate a
prostate in an MR image, but it demands much effort. It is hence
necessary to develop an automatic algorithm that yields a precise
segment of a prostate without human guidance or annotations. Fig. 1
shows examples of prostate image slices.

The prostate segmentation is a challenging problem due to three
main difficulties. First, prostate MR images have severe intra-image
and inter-image variations, caused by endorectal coils [1,2]. Second,
in the view of the medical imaging, the appearances of prostates are
similar to those of other organs, such as seminal vesicles or blad-
ders. Third, only a limited number of prostate MR images are avail-
able due to patients’ privacy, and thus it is difficult to learn general
characteristics of prostates.

To address these difficulties, semi-supervised prostate segmen-
tation algorithms [2, 3] have been proposed, which require user an-
notations about prostate regions in a few slices. Malmberg et al. [3]
propagate user annotations from seed voxels to the others. Tian et
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Fig. 1: Examples of 2D image slices of prostate MR images. The
outlines of the prostates are depicted in yellow.

al. [2] over-segment each image slice into superpixels, and then di-
chotomize the superpixels into either prostate or non-prostate class
based on the graph-cut optimization. Although [2, 3] yield reliable
segments, the user annotations can be burdensome. To minimize
user effort, unsupervised algorithms [1,4] also have been developed.
Vincent et al. [4] construct a generative prostate model using appear-
ance, position, and texture features. Mahapatra and Buhmann [1]
segment a prostate using a random forest classifier. However, [1, 4]
use hand-crafted features, which can be easily overfitted.

Recently, deep-learning-based algorithms [5–10] have demon-
strated outstanding performances for natural or medical image seg-
mentation. With this success of the deep-learning-based segmen-
tation, automatic prostate segmentation algorithms have been pro-
posed [11, 12]. Milletari et al. [11] separate prostate regions from
an MR image via a CNN, which uses 3D convolutional filters. Yu et
al. [12] adopt the residual feature forwarding [13] and also perform
the sliding window sampling to obtain segments statistically. Al-
though the Yu et al.’s algorithm [12] yields promising performances,
it adopts the cross entropy as the objective function, without investi-
gating other objective functions.

In this work, we analyze the impacts of six objective functions
on the performance of CNN-based prostate segmentation: Hamming
distance, Euclid distance, Jaccard similarity, dice coefficient, cosine
similarity, and cross entropy. To this end, we develop a baseline
CNN (BCNN), which can be trained to optimize each objective func-
tion. In the BCNN, we adopt the residual feature forwarding [13]
and intermediate feature propagation [14] strategies for reliable and
effective training. Then, we compare the segmentation results of the
proposed BCNN using the six objective functions, from which im-
portant observations are made. Especially, the cosine similarity pro-
vides the best performance, whereas the widely-used cross entropy
yields the worst performance.

Section 2 describes the BCNN and the six objective functions.
Section 3 compares the objective functions quantitatively and quali-
tatively. Finally, Section 4 concludes this work.



Fig. 2: The architecture of the proposed BCNN, which uses the encoding, bridge, decoding, and classification modules.

2. BCNN AND OBJECTIVE FUNCTIONS

Fig. 2 shows the architecture of the proposed BCNN, which accepts
a 3D voxel image as input. We resize an input MR image into 128×
128 × 64. As a result, each voxel covers the physical volume of
0.625 × 0.625 × 1.5 mm3. For each voxel, the proposed BCNN
infers the probability that it belongs to a prostate gland region.

2.1. Proposed BCNN Architecture

As shown in Fig. 2, the proposed BCNN consists of four kinds of
modules: encoding, bridge, decoding, and classification modules.
Each encoding module has three 3D convolutional layers (Conv) and
a downsampling layer. The downsampling layer is implemented by
a convolutional layer, the stride of which is 2. Thus, each down-
sampling layer reduces the spatial resolution by a factor of 2 axially,
sagittally, and coronally. The batch normalization (BN) reduces the
imbalance of inter-channel features for reliable training. We exploit
the parametric rectified linear unit (PReLU) [15] as an activation
function to prevent over-fitting. Also, the residual feature forward-
ing strategy [13] is used in the encoding modules to train the deep
network effectively. The bridge module is the same as the encod-
ing modules, except that it excludes the downsampling layer. Each
decoding module performs upsampling, followed by three convolu-
tional layers. We implement the upsampling layer using a deconvo-
lutional layer, which enlarges the spatial resolution by a factor of 2
axially, sagittally, and coronally. The classification module predicts
the probability that each voxel belongs to the prostate. Consequently,
BCNN yields a segmentation map that has the same spatial resolu-
tion as the input image.

Deep features are extracted from the input image by the encod-
ing modules. While these deep features contain prostate information,
they may lose spatial details due to the downsampling layers. Hence,
as done in [10], we exploit the intermediate features in the decoding
phase, by employing the element-wise addition operator in Fig. 2.
The intermediate features have low-level information, and thus can
improve the qualities and details of segments [14].

2.2. Objective Functions

The proposed BCNN can be trained via the gradient descent method,
in which the gradients are computed to optimize an objective func-
tion. Therefore, the attributes and the performance of the network

Table 1: Operational taxonomic units (OTUs) [17].

Positive Negative
(Prediction) (Prediction)

Positive
a =

∑N
i=1 piqi b =

∑N
i=1 (1− pi)qi(Ground-truth)

Negative
c =

∑N
i=1 (1− qi)pi d =

∑N
i=1 (1− pi)(1− qi)(Ground-truth)

are affected by the adopted objective function.
We consider six objective functions [16]: Hamming distance,

Euclidean distance, Jaccard similarity, dice coefficient, cosine sim-
ilarity, and cross entropy. They are used to compute the similarity
or dissimilarity between two binary signals. Note that the Hamming
distance, the Eunclidean distance, and the cross entropy are dissim-
ilarity measures and thus should be minimized, whereas the Jaccard
similarity, the dice coefficient, and the cosine similarity are similar-
ity measures to be maximized.

Except for the cross entropy, the objective functions can be com-
pactly described by the operational taxonomic units (OTUs) [17].
Table 1 summarizes the four OTUs a, b, c, and d in terms of pre-
dicted and ground-truth labels. Let P = {p1, . . . , pN} be the set
of predicted labels of voxels, obtained by a segmentation algorithm,
and Q = {q1, . . . , qN} be the set of the ground-truth binary labels.
Each OTU is computed by counting the number of voxels that have
a certain pair of predicted and ground-truth labels. For example, a
counts the number of voxels whose predicted and ground-truth la-
bels are both ‘positive.’ In other words, it is the number of true
positives. Similarly, b, c, and d count false negatives, false positives,
and true negatives, respectively. Note that the sum of all four OTUs
is N = a+ b+ c+d, where N is the number of voxels in an image.

2.2.1. Hamming Distance

The Hamming distance is the simplest distance metric, which con-
siders only false negatives and false positives. It counts the number
of wrong predictions and is commonly used to quantify mismatches
between two binary signals. The Hamming distance is defined as

DH = b+ c =

N∑
i=1

(
p2i + q2i − 2piqi

)
, (1)



and its gradient is composed of the partial derivatives

∂DH

∂pj
= 2 (pj − qj) , j = 1, . . . , N. (2)

In the training, since the Hamming distance is a dissimilarity mea-
sure, the gradient is directly employed in the backpropagation algo-
rithm.

2.2.2. Euclidean Distance

The Euclidean distance is also widely used, since it coincides with
the human conception of a distance. It is given by

DE =
√
b+ c =

√√√√ N∑
i=1

(p2i + q2i − 2piqi), (3)

and its partial derivatives are

∂DE

∂pj
=

pj − qj√∑
i (p

2
i + q2i − 2piqi)

, j = 1, . . . , N. (4)

As in the Hamming distance, the gradient is directly employed in the
backpropagation.

2.2.3. Jaccard Index

The Jaccard index is a similarity measure but it does not consider
true negatives. It is defined as

SJ =
a

a+ b+ c
=

∑N
i=1 piqi∑N

i=1 (p
2
i + q2i − piqi)

. (5)

Notice that the Jaccard index is identical to the intersection-over-
union (IoU) ratio, which is often used to evaluate segmentation al-
gorithms. The gradient of the Jaccard index consists of the partial
derivatives

∂SJ

∂pj
=

qj
∑

i

(
p2i + q2i − piqi

)
− (2pj − qj)

∑
i piqi(∑

i (p
2
i + q2i − piqi)

)2 (6)

where j = 1, . . . , N . The negative of the gradient should be used
in the backpropagation, since the objective function in (5) should be
maximized.

2.2.4. Dice Coefficient

The dice coefficient (or Sørensen index) is a weighted version of the
Jaccard index, which assigns bigger weights to true positives than to
false positives or false negatives. It is given by

SD =
2a

2a+ b+ c
=

2
∑N

i=1 piqi∑N
i=1 (p

2
i + q2i )

. (7)

Note that the conventional prostate segmentation algorithm [11] uses
the dice coefficient as its objective function. Furthermore, the dice
coefficient is used as the evaluation metric in the PROMISE12 chal-
lenge [18]. The partial derivatives are

∂SD

∂pj
=

2qj
∑

i

(
p2i + q2i

)
− 4pj

∑
i piqi(∑

i (p
2
i + q2i )

)2 (8)

where j = 1, . . . , N. In the training, the negative of the gradient is
used in the backpropagation.

Table 2: Segmentation scores of the proposed BCNN using different
objective functions. The best and the second best results are bold-
faced and underlined, respectively. For comparison, the score of [12]
is also included.

Algorithm Objective function Score

BCNN

Hamming distance 0.8366
Euclidean distance 0.8467
Jaccard similarity 0.8291
Dice coefficient 0.8507
Cosine similarity 0.8537
Cross entropy 0.8275

[12] Cross entropy 0.8693

2.2.5. Cosine Similarity

The cosine similarity computes the cosine of the angle between two
signals (or vectors), given by

SC =
a√

(a+ b) (a+ c)
=

∑N
i=1 piqi√∑N

i=1 p
2
i

∑N
i=1 q

2
i

, (9)

and its partial derivatives are

∂SC

∂pj
=

qj
∑

i p
2
i

∑
i q

2
i − pj

∑
i piqi

∑
i q

2
i(∑

i p
2
i

∑
i q

2
i

) 3
2

(10)

where j = 1, . . . , N . Since it is another similarity measure, the
negative of the gradient is used for the training.

2.2.6. Cross Entropy

The cross entropy is adopted as an objective function in many deep-
learning-based classification algorithms [13, 19, 20]. As an informa-
tion theoretic quantity, it is directly defined as

DC = −
N∑
i=1

qilog pi −
N∑
i=1

(1− qi)log(1− pi), (11)

instead of being described with the OTUs. Its partial derivatives are

∂DC

∂pj
= − qj

pj
+

1− qj
1− pj

, j = 1, . . . , N. (12)

The cross entropy quantifies a dissimilarity, and thus the gradient is
employed for the gradient descent.

2.3. Training Phase

As mentioned before, the lack of data makes it difficult to train a
CNN for the prostate segmentation. Only the PROMISE12 training
dataset [18] of 50 prostate MR images is available online. Hence,
we augment the training dataset by applying the flipping and the de-
formable transformation [11] to the training images. For every train-
ing instance, we perform the flipping and the deformable transforma-
tion independently, both with a probability of 0.5. We use the Ten-
sorFlow [21] to implement the objective function layers, and train
the proposed BCNN using the Adam optimizer. The initial learning
rate is set to 0.005 and then reduced to 0.0005 after 10,000 itera-
tions. We stop the training after 15,000 iterations, which requires
about eight hours using an NVIDIA GTX Titan X GPU.



(a) Cross entropy (b) Jaccard similarity (c) Hamming distance (d) Euclidean distance (e) Dice coefficient (f) Cosine similarity

Fig. 3: Qualitative comparison of the six objective functions for training the proposed BCNN. Each row is from a different MR image. The
yellow and red boundaries outline the ground-truth and predicted prostate segments, respectively.

3. EXPERIMENTAL RESULTS

We evaluate the proposed BCNN on the PROMISE12 training
dataset [18], which is composed of 50 prostate images. Because of
the lack of data, we adopt the 10-fold cross validation method: We
first split the dataset into 10 subsets. Then, to measure the perfor-
mance on a subset, we train the BCNN using the other nine subsets.
We do this process 10 times to assess the BCNN on all the subsets.
We use the dice coefficient score as the evaluation metric, as done
in [11, 12]. To segment a prostate image, the proposed BCNN takes
about 10 seconds on a PC with an Intel Xeon E5-2690 2.60GHz
CPU and an NVIDIA GTX Titan X GPU.

Table 2 compares the segmentation performances (dice coeffi-
cient scores) of the proposed BCNN using different objective func-
tions. Notice that the cosine similarity outperforms the other objec-
tive functions. It is worth pointing out that the cross entropy yields
the worst performance, even though it has been used for training
the conventional prostate segmentation algorithms [11, 12]. The Eu-
clidean distance makes the BCNN perform better than the Hamming
distance does. This is because the denominator in the derivative of
the Euclidean distance in (4) normalizes the scale of the gradient.
By comparing the Jaccard index with the dice coefficient, we see
that the segmentation performance is improved by assigning bigger
weights to true positives. For comparison, Table 2 also includes the
performance of Yu et al.’s algorithm [12], which outperforms the
proposed BCNN. However, the goal of this work is to analyze the

objective functions for the prostate segmentation. Hence, we do not
adopt complicated techniques, such as the sliding window sampling
strategy [12], for training the BCNN. The performance of the BCNN
can be further improved if we use these techniques as well.

Fig. 3 shows exemplar slices of prostate segmentation results.
It is observable that the cosine similarity is more accurate in dis-
covering prostate glands than the other objective functions are. This
indicates that Yu et al.’s algorithm [12] also may yield more accurate
prostate segments by employing the cosine similarity in stead of the
cross entropy. When the source codes of [12] become available, we
will investigate this possibility.

4. CONCLUSIONS

We proposed a deep-learning-based baseline algorithm, called
BCNN, for the prostate segmentation, which uses the residual
feature forwarding and intermediate feature propagation strate-
gies. Then, we introduced the six objective functions and derived
their gradients. We compared the performances of these objective
functions on the PROMISE12 dataset [18]. Experimental results
demonstrated that the BCNN using the cross entropy, which is
commonly adopted in the conventional prostate segmentation algo-
rithms [11, 12], provides the worst performance. On the other hand,
the BCNN using the cosine similarity perfoms the best. Future
research issues include the development of a more sophisticated
deep-learning-based algorithm for medical image segmentation that
uses the cosine similarity as the objective function.
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