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ABSTRACT

A novel RGB-D image segmentation algorithm is proposed in this
work. This is the first attempt to achieve image segmentation based
on the theory of multiple random walkers (MRW). We construct a
multi-layer graph, whose nodes are superpixels divided with various
parameters. Also, we set an edge weight to be proportional to the
similarity of color and depth features between two adjacent nodes.
Then, we segment an input RGB-D image by employing MRW sim-
ulation. Specifically, we decide the initial probability distribution
of agents so that they are far from each other. We then execute the
MRW process with the repulsive restarting rule, which makes the
agents repel one another and occupy their own exclusive regions.
Experimental results show that the proposed MRW image segmen-
tation algorithm provides competitive segmentation performances,
as compared with the conventional state-of-the-art algorithms.

Index Terms— Multiple random walkers, segmentation, ran-
dom walk, and RGB-D image segmentation.

1. INTRODUCTION

Image segmentation is a fundamental problem in image processing
and computer vision. It has been researched actively [1–8], in order
to divide an image into meaningful regions automatically. However,
it still remains a difficult problem when objects and background re-
gions have similar colors or textures. To alleviate this problem, we
can utilize depth information, since foreground and background re-
gions often yield different depths. Recently, RGB-D sensors can
be deployed at moderate costs, e.g. Microsoft Kinect. Many com-
puter vision techniques, such as activity recognition [9] and saliency
detection [10], exploit depth information. Likewise, we can adopt
depth cues to perform image segmentation more accurately.

Various image segmentation algorithms have been proposed.
Shi and Malik [1] introduced the spectral graph clustering, which
represents an image as a graph and exploits the eigenvectors of the
normalized Laplacian of the graph to segment the image. Comaniciu
and Meer [2] proposed the mean-shift algorithm, which delineates
clusters by finding local modes of a density function. Felzenszwalb
and Huttenlocher [3] proposed a graph-based algorithm, which
merges two regions by comparing the inter-region difference with
the internal difference of each region. Kim et al. [4] constructed
a multi-layer graph by over-segmenting an image into superpixels
and then employed the spectral clustering. Li et al. [5] also used the
multi-layer structure, but they designed a sparse bipartite graph to
segment an image efficiently. Arbeláez et al. [6] proposed a contour-
based algorithm. To improve the segmentation performance, their
algorithm applies the spectral clustering using multiple local cues
and employs a learned parameter set.

However, these algorithms [1–6] use only color information to
segment images. Recently, several RGB-D image segmentation al-
gorithms have been proposed. For instance, Gupta et al. [7] ex-
tended the contour-based algorithm in [6] to exploit depth informa-
tion. They used geometric cues from depth data to detect contours.
Silberman et al. [8] over-segmented an image and merged those su-
perpixels based on the similarity levels, which were obtained by
learned classifiers using RGB, depth, and scene structure data.

We propose a novel RGB-D image segmentation algorithm us-
ing the system of multiple random walkers (MRW). Lee et al. [11]
first introduced the notion of MRW, which simulates movements
of multiple random walkers (or agents) on a graph simultaneously.
They applied MRW to the co-segmentation problem, which employs
two agents only. On the other hand, this is the first attempt to use
multiple agents (more than two) in the MRW system to segment a
single image. First, we construct a graph using the superpixel tech-
niques in [2, 12]. Each superpixel becomes a node, and adjacent
nodes are connected by edges. Also, each edge weight is set to be
proportional to the similarity of the color and depth features between
the corresponding two superpixels. Then, we perform the MRW sim-
ulation to label each node. More specifically, we determine the initial
distributions of multiple agents by locating the agents sequentially,
so that they are far from one another. We then carry out the MRW
simulation with time-varying restarting distributions, which make
the agents repel one another and eventually settle in their own re-
gions. Experimental results show that the proposed MRW algorithm
provides competitive segmentation performances, as compared with
the conventional algorithms [3–7].

The rest of this paper is organized as follows: Section 2 proposes
the MRW image segmentation algorithm, Section 3 presents com-
parative experimental results, and Section 4 concludes this work.

2. PROPOSED ALGORITHM

2.1. Graph Construction

We over-segment an input color image using the superpixel meth-
ods [2, 12] to construct the graph G = (V,E). The node set V
consists of superpixels si, i = 1, ..., N , and edge eij in the edge set
E connects superpixels si and sj . We connect superpixels based
on a multi-layer structure to achieve reliable clustering. By em-
ploying differently over-segmented superpixels in the multiple layers
and combining the information systematically, ambiguous regions
with weak boundaries can be partitioned accurately in a probabilis-
tic manner [4, 5]. Fig. 1 shows the multi-layer structure, which has
a single primary layer and three secondary layers. Superpixels in
the primary and secondary layers compose the node set. The pri-
mary layer is partitioned into 300 superpixels by the SLIC algo-
rithm [12]. The secondary layers are partitioned, respectively, by



Input image

Fig. 1. The multi-layer graph structure. The upper and lower lay-
ers represent the primary and secondary layers, respectively. Each
superpixel becomes a graph node. Within each layer, adjacent su-
perpixels are connected by edges. A primary node and a secondary
node are connected, if they share the same pixel.

the mean-shift algorithm [2] with three sets of the parameters of
spatial bandwidth, range bandwidth, and minimum superpixel size:
(7, 7, 200), (7, 9, 200), (9, 7, 200).

Each superpixel in the primary and secondary layers is repre-
sented by the average LAB color and depth values of the member
pixels. Adjacent nodes within each layer are connected by edges.
Also, when a primary node and a secondary node share the same
pixel, they are connected. However, nodes in different secondary
layers are not connected.

We assign weight wij to edge eij , representing the affinity be-
tween si and sj . Edge weights are obtained from the color distances
and the depth distances between nodes. Specifically, we first calcu-
late the color distance ρc (si, sj) and the depth distance ρd (si, sj)
between si and sj as

ρc (si, sj) = ∥ci − cj∥2, (1)
ρd (si, sj) = (di − dj)

2, (2)

where ci and di denote the average LAB color and depth of si, re-
spectively. Then, we compute the edge weight wij by

wij =

exp

(
− ρc(si,sj)

2σ2
c

− ρd(si,sj)
2σ2

d

)
if eij ∈ E,

0 otherwise,
(3)

where the scale parameters are set to σ2
c = σ2

d = 1/60.
A random walker travels on the graph G according to the transi-

tion probability aij that the walker moves from node j to node i. We
obtain the transition probability aij by dividing wij by the degree
of node j, aij = wij/

∑
k(wkj). We then construct the transition

matrix A = [aij ].

2.2. MRW Simulation

For the image segmentation, we perform the MRW simulation [11],
in which multiple agents move on the graph and interact with one
another. Let p(t)

k = [p
(t)
k,1, . . . , p

(t)
k,N ]T be the probability distribution

of agent k on the graph at time t. Then, random movements of agent
k are determined by the recursion,

p
(t)
k = (1− ϵ)Ap

(t−1)
k + ϵm

(t)
k , k = 1, ...,K, (4)

where K is the number of agents on the graph. On the other hand,
the random walk with restart (RWR) simulation [13] is given by

p
(t)
k = (1− ϵ)Ap

(t−1)
k + ϵrk, k = 1, ...,K. (5)

In both MRW and RWR processes, agent k traverses the graph based
on the transition matrix A with probability 1− ϵ, and returns to spe-
cific nodes according to the restarting distribution with probability ϵ.
However, the MRW process adopts the time-varying restarting dis-
tribution m

(t)
k = [m

(t)
k,1, . . . ,m

(t)
k,N ]T for 1 ≤ k ≤ K, while the

RWR process the time-invariant restarting distribution rk.
In the MRW process, we can make the agents interact with one

another, by determining the time-varying restarting distribution m
(t)
k

of agent k at time t according to the probability distributions of all
agents at time t− 1.

2.3. Time-Varying Restarting Distributions

In this work, we determine the time-varying restarting distribution of
each agent, so that the agents repel one another. Specifically, we set
the ith component m(t)

k,i of the restarting distribution m
(t)
k of agent

k at time t to
m

(t)
k,i = β · α(t)

k,i · p
(t−1)
k,i , (6)

where

α
(t)
k,i =

∑
j aij · p(t−1)

k,j

maxl (
∑

j aij · p(t−1)
l,j )

(7)

and β is a constant to normalize m
(t)
k to a probability distribution.

Notice that
∑

j aij · p(t−1)
k,j measures the probability distribution of

agent k near the ith node at time t − 1. Hence, if there are other
agents with high probabilities near the ith node at time t − 1, α(t)

k,i

becomes smaller and m
(t)
k,i also becomes smaller at time t. On the

other hand, if agent k has a high probability p
(t−1)
k,i at node i, m(t)

k,i

becomes larger. Thus, an agent tends to restart, where it has a high
probability but the others have lower probabilities. This enforces the
agents to repel one another.

2.4. Initial Probability Distributions

As the iteration goes on, the MRW process in (4) with the restarting
rule in (6) converges to stationary distributions. However, the sta-
tionary distributions depend on initial distributions p

(0)
k , 1 ≤ k ≤

K. In this work, we attempt to locate multiple agents initially to
distantly placed modal nodes. Note that a modal node is defined as a
node around which the graph has the locally densest distribution of
nodes. To find modal nodes, we perform the RWR simulation of a
single agent in (5), by employing the uniform restarting distribution,
and obtain the stationary distribution q = [q1, ..., qN ]T . In general,
qi is high when node i is near a modal node.

Then, we determine the initial distributions p
(0)
k sequentially

from k = 1 to K. We execute another RWR process to decide p
(0)
k ,

by making agent k restart at the single node, which has a high prob-
ability in q but low probabilities in the previously computed p

(0)
n ,

1 ≤ n ≤ k − 1. In this way, we can locate agent k far from the
previously located agent. More specifically, to determine the single
restarting node, we define the vector hk = [hk,1, ..., hk,N ]T by

hk,i =
qi∑k−1

n=1 p
(0)
n,i

. (8)

Then, agent k restarts at the single node i∗k that maximizes hk,i,

i∗k = argmax
i

hk,i. (9)



Table 1. Comparison of image segmentation performances on 200 RGB-D images of NYUDv2 [8] and 50 RGB-D images of KINECTv2D.

Dataset Method PRI VoI BDE
ODS OIS ODS OIS ODS OIS

NYUDv2 [8]

FH [3] 0.8490 0.8675 2.2387 2.0935 9.9225 8.4116
MLSS [4] 0.8405 0.8576 2.0513 1.8968 11.0160 9.9269
SAS [5] 0.8495 0.8612 1.9733 1.8259 9.6465 8.3747
UCM [6] 0.8420 0.8533 2.2158 2.0169 10.2206 8.9251

UCM-RGBD [7] 0.8425 0.8685 1.8899 1.7614 15.8821 13.7184
MRW-RGB 0.8448 0.8615 2.0252 1.8344 9.5180 7.9506

MRW-RGBD 0.8515 0.8715 1.9606 1.7720 9.6745 8.2538

KINECTv2D

FH [3] 0.9363 0.9461 1.0974 0.9827 10.0310 8.9796
MLSS [4] 0.9558 0.9648 0.7387 0.6407 7.2702 5.0369
SAS [5] 0.9531 0.9641 0.7482 0.6332 8.2428 5.2309
UCM [6] 0.9554 0.9593 0.7901 0.7489 6.3822 5.1235

MRW-RGB 0.9488 0.9542 0.7645 0.6921 6.5969 5.1320
MRW-RGBD 0.9517 0.9659 0.7467 0.6249 7.2213 4.7636

(a) (b) (c) (d) (e) (f)

Fig. 2. An example of the MRW simulation: (a) an input color image, (b) the initial restarting node of each agent, and (c)∼(f) the segmentation
results at t = 1, 5, 10, and 100. In this simulation, we set K = 18.

With the selected restarting node, we perform the RWR process to
obtain the stationary distribution, which is used as the initial proba-
bility distribution p

(0)
k in (4).

Fig. 2 shows an example. Colored superpixels in Fig. 2(b) rep-
resent the restarting nodes of the 18 agents for the input image in
Fig. 2(a). Note that the restarting nodes belong to different objects.

2.5. Label Assignment

From the MRW simulation in (4), we obtain the stationary distribu-
tions pk = limt→∞ p

(t)
k for 1 ≤ k ≤ K. We assign label k to node

i, when agent k has the highest probability at node i. In other words,
we determine the label li of node i as

li = argmax
k

pk,i. (10)

In our system, K agents move on the graph to repel one another and
occupy their own regions in an input image. Consequently, the input
image is partitioned into K regions, where K is manually selected
by users.

Figs. 2(c)∼(e) show intermediate segmentation results for the
image in Fig. 2(a). We see that agents settle in their own regions,
as iteration goes on. After the convergence, the image is partitioned
into meaningful segments, as shown in Fig. 2(f).

3. EXPERIMENTAL RESULTS

To compare RGB-D image segmentation performances, we use 200
RGB-D images in the NYU depth dataset v2 (NYUDv2) [8] and
50 RGB-D images in our dataset captured from a Microsoft Kinect
v2 (KINECTv2D). NYUDv2 contains complex indoor scenes cap-
tured from a Microsoft Kinect v1, while KINECTv2D includes
relatively simple indoor scenes. We compare the proposed MRW-
RGBD segmentation algorithm with five conventional methods:

efficient graph-based segmentation (FH) [3], multi-layer spectral
segmentation (MLSS) [4], segmentation by aggregating superpix-
els (SAS) [5], ultrametric contour maps (UCM) [6], and ultramet-
ric contour maps for RGB-D images (UCM-RGBD) [7]. For the
UCM-RGBD algorithm, we report the results only on the NYUDv2
dataset, which are available in [7]. Also, we modify the proposed
MRW algorithm to use color information only (MRW-RGB). The
MRW-RGB results are obtained by replacing the edge weight in (3)
with

wij =

exp

(
− ρc(si,sj)

2σ2
c

)
if eij ∈ E,

0 otherwise.
(11)

To compare the segmentation performances quantitatively, we
adopt three metrics: probabilistic rand index (PRI) [14], varia-
tion of information (VoI) [15], and boundary displacement er-
ror (BDE) [16]. PRI counts the pairs of pixels that have consistent
labels between a human annotated result and an automatic result.
VoI measures the amount of irrelevant information between the two
results. BDE measures the average displacement of boundaries be-
tween the results. Thus, a better segmentation scheme should yield
a higher PRI value and lower VoI and BDE values. We evaluate
the performances according to the optimal dataset scale (ODS) and
the optimal image scale (OIS), respectively, by varying the param-
eters. The number of segments for each image varies from 4 to 20
when we measure the segmentation performances of MRW-RGB
and MRW-RGBD.

Table 1 compares the segmentation performances. Note that
the proposed algorithm has competitive image segmentation per-
formances to the state-of-the-art methods on both NYUDv2 and
KINECTv2D datasets. Especially, the proposed algorithm provides
comparable image segmentation performances to UCM-RGBD on
NYUDv2, even though UCM-RGBD is a learning-based method.
Also, by comparing the results of MRW-RGB and MRW-RGBD,
we see that depth information improves the performance of the pro-



(a) (b) (c) (d) (e) (f)

Fig. 3. Segmentation results on the NYUDv2 [8]: (a) input images, (b) depth images, (c) ground-truth, (d) SAS [5], (e) UCM-RGBD [7], and
(f) MRW-RGBD.

(a) (b) (c) (d) (e) (f)

Fig. 4. Segmentation results on the KINECTv2D: (a) input images, (b) depth images, (c) ground-truth, (d) SAS [5], (e) UCM [6], and (f)
MRW-RGBD.

posed algorithm, except for the case of the BDE test. In the BDE
test, the boundary accuracy is important, but the depth noise of the
Kinect sensor causes the degradation of boundaries in some cases.

Fig. 3 shows examples of the segmentation results of SAS,
UCM-RGBD, and MRW-RGBD on NYUDv2. We set the param-
eters for each algorithm to obtain the best performance. SAS fails
to segment objects, which have similar colors to surrounding re-
gions, since it only exploits color information. For example, in the
fourth row in Fig. 3(d), SAS cannot delineate the chair correctly.
UCM-RGBD is a contour-based method, which merges superpix-
els based on the strength of detected contours. Thus, they fail to
merge regions, belonging to the same object, when the object has
complex color information, as shown in the second row in Fig. 3(e).
In contrast, in Fig. 3(f), the proposed algorithm segments input im-
ages more accurately. Fig. 4 shows segmentation results of SAS,
UCM, and MRW-RGBD on KINECTv2D. We see that the pro-

posed MRW-RGBD algorithm separates foreground objects from
background regions successfully.

4. CONCLUSIONS

We proposed the RGB-D image segmentation algorithm, which seg-
ments an image using multiple agents in the MRW system. We first
constructed a multi-layer graph using the different superpixel meth-
ods [2, 12]. We set the initial probability distribution of agents to be
far apart from one another. Then, we executed the MRW simulation
with the time-varying restarting distributions to make the agents re-
pel one another. Finally, we assigned a label to each node using the
stationary distributions of the agents. Experimental results showed
that the proposed algorithm provides competitive performances, in
comparison with the state-of-the-art algorithms.
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