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ABSTRACT

A novel quality metric for binary edge maps, called the struc-
tural edge quality metric (SEQM), is proposed in this work. First,
we define the matching cost between an edge pixel in a detected
edge map and its candidate matching pixel in the ground-truth edge
map. The matching cost includes a structural term, as well as a posi-
tional term, to measure the discrepancy between the local structures
around the two pixels. Then, we determine the optimal matching
pairs of pixels using the graph-cut optimization, in which a smooth-
ness term is employed to take into account global edge structures
in the matching. Finally, we sum up the matching costs of all edge
pixels to determine the quality index of the detected edge map. Sim-
ulation results demonstrate that the proposed SEQM provides more
faithful and reliable quality indices than conventional metrics.

Index Terms— Image quality assessment, edge quality assess-
ment, binary edge map, structural similarity, and pixel matching.

1. INTRODUCTION

Edge detection is essential in many image processing and computer
vision applications. Different edge detectors provide different edge
maps, as shown in Fig. 1. To check the suitability of an edge map in
an application, it is important to assess the quality of the edge map
quantitatively by comparing it with the ground-truth edge map. The
peak signal-to-noise ratio (PSNR) is one of the most popular quality
metrics in the field of image processing. It is easy to compute and
effective for various quality assessment tasks. However, PSNR does
not match well with the image quality assessment of the human vi-
sual system (HVS). Recently, several methods have been proposed to
overcome this drawback. For example, Wang et al. [1] proposed the
structural similarity (SSIM) metric, which combines the luminance,
contrast, and structure terms. By considering the contrast and struc-
tural similarities, SSIM can obtain results that are more faithful to
HVS. Also, Sheikh and Bovik [2] formulated the visual information
fidelity (VIF), which measures the information difference between a
reference image and its distorted image.

The quality assessment problem of edge maps, however, is dif-
ferent from that of general gray-level or color images. In edge maps,
edge pixels may be displaced or disappear, whereas false edge pixels
may occur. Fig. 1 illustrates the displacement, occurrence, and ex-
tinction of edge pixels between two binary edge maps. The common
image metrics may assess the qualities of edge maps misleadingly.

Several specialized metrics have been developed, which can
evaluate the quality of an edge map more faithfully. The figure of
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Fig. 1. The edge maps of the “Lena” image, which are obtained by
(a) the Canny edge detector [3] and (b) the Prewitt edge detector [4].

merit (FOM) [5] computes the distance between a detected edge
pixel and the corresponding ground-truth edge pixel. It allows
many-to-one mapping between detected and ground-truth edge pix-
els. Similar to FOM, the closest distance metric (CDM) [6] matches
detected pixels to ground-truth pixels, even if they are displaced by
small positional errors. However, CDM allows one-to-one mapping
only and is applicable to gray-level edge maps as well as binary
edge maps. The pixel correspondence metric (PCM) [7] combines
the edge strength cost with the distance cost in the edge pixel match-
ing. It uses a weighted matching algorithm for bipartite graphs
and produces robust results for both binary and gray-level edge
maps. FOM, CDM, and PCM are all based on the positional pixel
matching, and they are conceptually simple. However, these quality
metrics cannot reflect structural similarity in the pixel matching,
resulting in misleading assessment results in some cases.

In this work, we propose a novel quality metric for binary edge
maps, called the structural edge quality metric (SEQM), which em-
ploys a structural similarity term as well as a positional similarity
term. For each detected edge pixel, we first compute its matching
costs to candidate edge pixels in the ground-truth map. Each match-
ing cost is the sum of the structural cost, which measures the discrep-
ancy between the local edge structures around the two pixels, and the
positional cost. Then, among the candidate pixels, we determine the
best matching pixel using the graph-cut optimization [8–10]. In the
optimization, we encourage the matching of neighboring detected
pixels to neighboring ground-truth pixels. After the optimization,
we sum up the matching costs of all detected pixels to determine the
quality index of the edge map. Simulation results demonstrate that
the proposed SEQM provides faithful and reliable quality indices.

It is noted that, although we develop SEQM primarily for mea-
suring the qualities of binary edge maps, we can employ SEQM to
assess various other types of binary images as well, which include
document images, segment maps, and contour images. This is be-



(a) (b) (c)

(d) (e)

Fig. 2. (a) Source block BS , (b) target block B1
T , (c) target

block B2
T , (d) BS − B1

T , (e) BS − B2
T . A dotted white pixel has

value −1.

cause the proposed SEQM is designed to quantify both structural
and geometrical deformation in general binary images. We provide
experimental results on the quality assessment of document images,
and show that SEQM provides more faithful quality indices, which
are more coherent to the subjective assessment of HVS, than the
conventional metrics.

The rest of this paper is organized as follows. Section 2 proposes
SEQM, and Section 3 provides experimental results. Finally, Section
4 concludes this work.

2. SEQM

SEQM employs the structural pixel matching, which is based on the
structural similarity and the positional similarity between source and
target edge pixels. Given source and target edge maps, SEQM takes
three steps to compute the quality index, which measures the simi-
larity between the source edge map and the target edge map. First,
SEQM computes the pixel matching cost between each pair of a
source pixel and a candidate target pixel. Second, it determines the
correspondences between source pixels and target pixels using the
graph-cut optimization. Third, it computes the quality index by sum-
ming up the pixel matching costs between the corresponding source
and target pixels.

2.1. Structural Pixel Matching

Suppose that we determine the similarity between a source edge map
Is and a target edge map It. Let s denote an edge pixel in Is. Also,
let t denote an edge pixel in It, which is a matching candidate to s.
In this work, we search a matching pixel t within the 5× 5 window
in It, which is centered at the same position as s.

First, we define the positional matching cost Cα(s, t) between
s and t, based on the Euclidean distance, as

Cα(s, t) =
1

R

√
(x(s)− x(t))2 + (y(s)− y(t))2, (1)

where (x(s), y(s)) and (x(t), y(t)) are the coordinates of s and t,
respectively. Also, R is a normalizing constant to control the impor-
tance of the positional matching cost in the overall matching. We set
R to 10 to make the maximum positional matching cost to 0.28.
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Fig. 3. (a) A difference block, and (b) the Hungarian matching result
for (a). A dotted white pixel has value −1.

Next, we define the structural matching cost Cβ(s, t), which
plays a vital role in our metric SEQM. To determine Cβ(s, t), we
use the information in the blocks BS and BT , which are the 3 × 3
blocks centered at s and t, respectively. We subtract the target block
BT from the source block BS to obtain the difference block

BD = BS −BT . (2)

Pixel values in BS and BT are binary: 0 for a non-edge pixel and
1 for an edge pixel, which are depicted by black and white pixels in
this work, respectively. Thus, pixel values in BD are ternary, i.e. −1,
0, or 1. Also, the center pixel of BD should be 0, since the center
pixels of BS and BT are s and t, both of which are 1.

The absolute sum of pixel values in BD is equal to the Hamming
distance between BS and BT , which is a useful metric. The Ham-
ming distance, however, is not sufficient to describe the structural
similarity between BS and BT . Fig. 2 shows an example, in which
the block in (a) is a source block BS , and the blocks in (b) and (c)
are two candidate target blocks B1

T and B2
T . The difference blocks

BS −B1
T and BS −B2

T are shown in (d) and (e). The two candidate
blocks B1

T and B2
T have the same Hamming distance to the source

block BS , which is 2. But, B1
T has higher structural similarity to

BS than B2
T does. This is because we can deform BS to B1

T sim-
ply by exchanging the pair of adjacent black and white pixels. The
deformation from BS to B2

T is more complicated.
The set of pixels in the difference block BD can be partitioned

into V −, V 0, and V +, according to the pixel values −1, 0, and 1.
Notice that ‘1’ pixels should be near to ‘−1’ pixels, if the deforma-
tion from BS to BT is not strong. Therefore, based on the graph
theory, we search the optimal one-to-one matching between V −

and V + using the Hungarian method [11], which is the most well-
known method for solving assignment problems. Specifically, we
form the bipartite graph between V − and V +, and assign a weight
w(v−,v+) to the edge connecting pixel v− in V − to pixel v+ in
V +, which is given by

w(v−,v+) = H(|x(v−)− x(v+)|+ |y(v−)− y(v+)|), (3)

where H(d) is a monotonic function that returns a positive penalty
according to the l1-distance d between v− and v+. We set H(1) =
1, H(2) = 1.6, H(3) = 2, H(4) = 2. Then, using the Hungarian
method, we determine the optimal matching pairs between V − and
V +. For instance, let us consider the difference block in Fig. 3(a).
After forming the bipartite graph between V − = {A,C,D} and
V + = {F,H}, we obtain the optimal matching pairs (C,F) and
(D,H), depicted by red edges in Fig. 3(b).

Then, we compute the structural matching cost Cβ(s, t) be-
tween s and t as

Cβ(s, t) =
nr +

∑
(v−

i ,v+
j )∈M w(v−

i ,v+
j )

8
, (4)
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Fig. 4. Edge pixel matching results (a) without the smoothness term
and (b) with the smoothness term. The left and right blocks are the
source and target images of size 7× 3, respectively.

where M is the set of the optimal matching pairs and nr is the
number of remaining unmatched pixels. Each unmatched pixel con-
tributes 1 in the numerator in (4). Note that H(3) = H(4) = 2.
Therefore, when the l1-distance between v−

i and v+
j is larger than

2, the two pixels share the weight w(v−
i ,v+

j ) = 2. This means that
we treat two pixels as unmatched, when their l1-distance is larger
than 2. Notice that 0 ≤ Cβ ≤ 1. If Cβ = 0, BS and BT are exactly
the same.

Finally, the overall matching cost Cpixel(s, t) is composed of
the positional cost Cα(s, t) and the structural cost Cβ(s, t), given
by

Cpixel(s, t) = 1− (1− Cα(s, t))× (1− Cβ(s, t)). (5)

The structural similarity term (1 − Cβ(s, t)) indicates how similar
the local structure around s is to that around t, whereas the posi-
tional similarity term (1−Cα(s, t)) means how close the two pixel
positions s and t are. Our definition of the pixel matching cost in (5)
is better than the direct multiplication of Cα(s, t) and Cβ(s, t). In
case of the direct multiplication, the pixel matching cost becomes 0,
if Cα(s, t) or Cβ(s, t) is 0. However, in our definition, Cpixel(s, t)
is 0, only if both Cα(s, t) and Cβ(s, t) are 0, i.e. only if s is matched
exactly to t both positionally and structurally.

2.2. Edge Map Matching by Energy Minimization

For each edge pixel s in the source edge map Is, we may find the best
matching edge pixel t in the target edge map It that minimizes the
pixel matching cost in (5). However, the pixel matching cost consid-
ers local structures only. We propose considering global structures,
as well as local structures, in order to match the edge pixels in Is to
those in It more reliably.

For each edge pixel si in Is, let li denote the label, which repre-
sents the displacement vector, given by

li = ti − si, (6)

where ti is a candidate matching edge pixel in It. Since the match-
ing is performed within the 5 × 5 window, there are 25 kinds of
labels. Let L be the label map that records the labels of all edge pix-
els in Is. Suppose that si and sj are adjacent edge pixels in Is. Then,
if It is not too much degraded from Is, si and sj tend to be matched
to ti and tj , which are also adjacent. Based on the observation, we
define a smoothness term

V (li, lj) =

{
0, if li = lj ,
1, if li ̸= lj .

(7)
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Fig. 5. Visualization of the similarity of each edge pixel to the
matching pixel in the ground-truth edge map on a part of the “Lena”
image. In (a), the top is the ground-truth edge map, the middle and
the bottom are distorted by ‘1-shift noise’ and ‘1-swapping noise,’
respectively. In (b), the similarities of edge pixels for the two types
of noises are assessed by PCM. In (c) and (d), respectively, the po-
sitional similarities and the structural similarities maps are assessed
by the proposed SEQM.

In other words, the smoothness term gives a penalty when adjacent
pixels have different labels.

Then, we form an energy function, which consists of the data
term and the smoothness term, given by

E(L) = Edata(L) + δ · Esmooth(L)

=
∑
si∈Is

Cpixel(si, si + li) + δ ·
∑

(si,sj)∈N

V (li, lj), (8)

where N denotes the set of pairs of 8-connected edge pixels. The pa-
rameter δ controls the balance between the data term and the smooth-
ness term. It is set to 0.1.

We obtain the optimal label map L∗ by minimizing the energy
function E(L),

L∗ = argmin
L

E(L). (9)

For the energy minimization, we use the graph-cut algorithm in [8–
10]. Then, we compute the edge map matching cost Cmap(Is, It)
from Is to It,

Cmap(Is, It) = Edata(L
∗) =

∑
si∈Is

Cpixel(si, si + l∗i ). (10)

Fig. 4 illustrates the impacts of the smoothness term in the op-
timization. Ideally, each edge pixel in the source image should be
matched to the edge pixel in target image, which is shifted upward
by one pixel. However, as shown in Fig. 4(a), edge pixels are poorly
matched without the smoothness term, since the second pixel in the
source image is matched to the second and third pixels with the iden-
tical data cost. By incorporating the smoothness term in Fig. 4(b),
we resolve this ambiguity and obtain the ideal result.



Table 1. Comparison of the quality assessment results of PCM, FOM, SSIM, PSNR and the proposed SEQM. In this table, we list the quality
indices of SEQM in percentage (%), by multiplying them by 100.

Gaussian Salt-and-Pepper Speckle Gaussian blur 1-shifting 1-swapping
Image Measure 325.1 650.3 975.4 0.025 0.05 0.075 0.02 0.04 0.06 1.0 4.0 9.0 noise noise

PCM 80.94 76.41 72.93 80.08 72.32 66.02 83.40 76.93 68.58 91.39 85.91 85.86 91.54 90.99
FOM 87.66 83.12 79.06 87.46 80.31 72.08 90.92 84.41 73.01 94.67 88.64 86.89 91.83 91.17

Barbara SSIM 65.81 57.78 50.76 68.67 52.84 38.17 69.23 61.15 47.39 92.02 79.44 74.61 26.26 31.89
PSNR 12.45 11.36 10.64 12.68 10.88 9.41 13.03 11.60 10.17 19.70 14.78 13.64 8.38 8.86
SEQM 86.41 82.30 79.01 86.78 79.91 72.81 87.93 83.61 75.64 95.89 90.20 88.86 90.55 78.99
PCM 82.64 75.60 74.63 81.96 70.88 59.29 84.06 74.43 67.38 88.88 89.58 88.72 92.22 90.71
FOM 90.49 83.72 79.70 89.61 75.35 61.42 92.58 79.57 72.10 93.82 94.51 92.87 91.08 90.62

Lena SSIM 75.52 65.47 60.82 75.83 55.93 40.42 76.70 65.28 54.81 92.74 85.05 80.99 35.40 41.43
PSNR 14.37 12.79 12.05 14.39 11.77 10.00 14.66 12.71 11.65 20.37 16.28 15.12 9.25 9.85
SEQM 88.02 83.02 79.84 88.42 76.98 66.76 89.27 80.92 75.72 95.51 92.66 91.71 90.19 78.03
PCM 81.98 71.67 67.14 82.03 66.88 61.91 80.34 75.14 66.97 95.61 87.30 85.14 91.46 91.65
FOM 90.81 79.12 70.57 88.86 71.49 66.22 88.87 82.64 70.78 98.79 88.23 84.76 92.44 92.31

Peppers SSIM 73.27 57.92 47.49 71.00 49.78 40.40 72.00 63.29 53.32 96.05 80.92 75.88 40.69 46.26
PSNR 13.79 11.65 10.67 13.37 10.98 10.06 13.61 12.24 11.05 21.79 15.01 13.83 9.43 10.02
SEQM 87.16 79.05 73.59 87.07 74.88 68.99 86.47 81.76 74.65 97.82 90.42 87.79 90.76 80.44
PCM 72.57 67.92 64.43 71.98 65.99 63.13 74.63 68.52 66.20 80.91 83.54 83.55 91.25 91.47
FOM 81.86 75.03 71.04 82.30 74.88 70.25 84.80 78.25 74.27 90.25 88.36 85.79 92.76 92.47

Baboon SSIM 42.60 30.92 25.42 46.16 30.93 21.63 47.22 33.67 28.90 81.44 68.41 62.43 21.83 28.79
PSNR 9.50 8.27 7.77 9.68 8.31 7.47 9.77 8.56 8.00 15.43 12.15 11.26 7.67 8.13
SEQM 77.51 72.65 68.52 78.24 71.28 66.62 79.57 73.55 70.67 92.03 87.57 86.21 90.93 80.33

2.3. Edge Map Quality Index

We compute the edge map matching costs bidirectionally, i.e. from
Is to It and vice versa, and define the commutative metric between
Is and It, which is given by

SEQM(Is, It) = 1− Cmap(Is, It) + Cmap(It, Is)

ns + nt
, (11)

where ns, nt denote the numbers of edge pixels in Is, It, respec-
tively. Notice that 0 ≤ SEQM(Is, It) ≤ 1.

We combine the two matching costs by

C(Is, It) + C(It, Is)

ns + nt
,

instead of the separate average

1

2
(
C(Is, It)

ns
+

C(It, Is)

nt
).

This is because the separate average may be misleading. For exam-
ple, suppose that Is has a lot of edge pixels and It has few edge
pixels only. Then, the matching from Is to It incurs a high cost,
but the matching cost from It to Is is negligible. In such a case, the
separate average is about 0.5, but our definition in (11) leads to the
combined matching cost that is almost 1. Thus, our definition makes
more sense.

3. EXPERIMENTAL RESULTS

3.1. Quality Assessment of Edge Maps

We first test the performance of SEQM on edge maps of four clas-
sical test images: “Barbara,” “Lena,” “Peppers,” and “Baboon.” We
use the edge maps, obtained by the Canny edge detector [3], as the
ground-truth edge maps. Then, we corrupt the test images with var-
ious noises and assess the qualities of the edge maps for the cor-
rupted images, obtained by the same Canny edge detector. We em-
ploy four noise types: additive zero-mean Gaussian noises with vari-
ances 325.1, 650.3, and 975.4, salt-and-pepper noises with noise oc-
currence probabilities 0.025, 0.05, and 0.075, multiplicative speckle

noises with variances 0.02, 0.04, and 0.06, and Gaussian blurs with
filters of size 5× 5 with variances 1.0, 4.0, and 9.0.

We also corrupt the ground-truth edge maps by two types of cus-
tom noises. The first type is ‘1-shifting noise’ that shifts all edge pix-
els to the right by one pixel. The second type is ‘1-swapping noise’
that swaps each edge pixel with its left or right pixels randomly. Note
that ‘1-shifting noise’ does not change the structural characteristics
of edge maps, but ‘1-swapping noise’ disturbs them.

Table 1 compares the edge map quality assessment results of the
proposed SEQM with those of the conventional metrics PCM [7],
FOM [5], SSIM [1], and PSNR. For PCM, the maximum matching
distance is set to 2 as in the proposed SEQM. For FOM, the scal-
ing parameter a is set to 1/9, which is a typical value. We observe
that, similar to the conventional metrics, SEQM quality indices de-
crease as the noise intensities increase for the first three noise types.
For Gaussian blurs of “Lena” and “Baboon”, PCM and FOM quality
indices have no correlation with the noise intensities. In contrast,
SEQM exhibits quality indices consistent with the noise intensities.
Also, at the same noise intensity, SEQM quality indices are lower for
the “Baboon” image, which has more complicated textures. There-
fore, the edge detection results on the “Baboon” image are more
severely affected by the same amount of noises. These results indi-
cate that SEQM is a stable and reliable metric for edge maps.

In contrast to the conventional metrics, the proposed SEQM as-
sesses the structural similarity of an edge map to its ground-truth
one more faithfully. As shown in Fig. 5,‘1-shifting noise’ does not
change the structure of edges, whereas ‘1-swapping noise’ corrupts
them severely. However, it can be observed in Table 1 that PCM
and FOM provide similar scores for both types of noises. In case
of SSIM, the scores for ‘1-shifting noise’ are even lower than those
for ‘1-swapping noise.’ This is because the conventional metrics
focus on the positional matching only, without the systematic con-
sideration of structural similarities. In contrast, we see that SEQM
provides consistently lower quality indices for ‘1-swapping noise’
than for ‘1-shifting noise.’ These assessment results confirm our
main idea that the structural information is important in evaluating
the quality of an edge map.

Fig. 5 visualizes the similarity of each edge pixel in an edge map
to the matching pixel in the ground-truth edge map visually. For
SEQM, we show the uni-directional similarities from detected edge
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Fig. 6. Text documents. The top and the bottom contain texts in regular and boldface fonts, respectively. (a) ‘Print doc,’ (b) ‘Copy doc,’ and
(c) ‘Fax doc.’

(a) (b) (c) (d)

Fig. 7. Image documents. The top and the bottom are the edge maps of “Lena” and “Baboon,” respectively. (a) The entire images of ‘Print
doc’ and (b) their enlarge parts. The enlarged parts of (c) ‘Copy doc’ and (d) ‘Fax doc.’

pixels to ground-truth edge pixels. In the case of PCM in Fig. 5(b),
there are small differences between the similarities for the ‘1-shifting
noise’ and ‘1-swapping’ noise. On the other hand, in SEQM, we see
noticeable differences between the structural similarities in Fig. 5(d),
although there are negligible differences between the positional sim-
ilarities in Fig. 5(c). Thus, the proposed SEQM assess the qualities
of binary images reliably and faithfully, by considering the structural

similarities as well as the positional similarities.

In addition, notice that both SEQM and PCM are designed such
that their ideal scores for ‘1-shifting noise’ are exactly 90%. How-
ever, the actual scores in Table 1 are higher than 90% due to mis-
matching pairs. Specifically, the 1-pixel shift is not detected for
some source pixels, which are incorrectly matched to target pixels
at the same positions. But we see that SEQM provides relatively



Table 2. Comparison of the quality assessment results of PCM,
FOM, SSIM, PSNR and the proposed SEQM for binary document
images. In this table, we list the quality indices of SEQM in percent-
age(%), by multiplying them by 100.

Image Measure Copy doc Fax doc
PCM 85.63 66.90
FOM 42.00 42.79

Regular SSIM 74.73 30.19
PSNR 12.12 7.02

Text SEQM 84.38 72.12
documents PCM 86.34 74.31

FOM 40.83 42.71
Boldface SSIM 63.02 41.32

PSNR 9.79 7.86
SEQM 85.36 79.22
PCM 66.39 77.16
FOM 69.35 95.13

Lena SSIM 70.63 61.37
PSNR 12.38 9.81

Image SEQM 80.41 80.13
documents PCM 73.58 75.46

FOM 80.89 91.76
Baboon SSIM 63.80 36.89

PSNR 9.46 6.62
SEQM 82.54 76.54

more accurate scores than PCM by employing the smoothness term
and reducing mismatching pairs.

3.2. Quality Assessment of Document Images

Next, we examine the quality assessment performance of SEQM on
binary document images. Document images can be degraded by di-
verse processes, such as printing, copying, and transmission. This
degradation in practical applications is different from typical noise
models: Gaussian, salt-and-pepper, and speckle noises. The degra-
dation incurs displacements, occurrences, and extinction of black
pixels on white background. Therefore, the proposed SEQM for
edge map quality assessment, which is based on the pixel match-
ing criterion, is also suitable for evaluating binary document images.
SEQM hence can be used to measure the performance of office au-
tomation equipments, such as printers, scanners, and facsimiles.

In this test, we use two text documents (regular and boldface)
and two image documents (edge maps of “Lena” and “Baboon”).
We process these documents in three-ways:

1. Print → Scan
2. Print → Copy → Scan
3. Print → Facsimile Transmission → Scan

These documents are labeled as ‘Print doc,’ ‘Copy doc,’ and ‘Fax
doc,’ respectively. Since the printing and scanning steps are com-
mon in all three processes, we regard ‘Print doc’ as the ground-truth
binary image and measure the qualities of ‘Copy doc’ and ‘Fax doc.’

As shown in Figs. 6 and 7, ‘Fax doc’ experiences heavier pixel
displacements, occurrences, and extinction than ‘Copy doc’ in gen-
eral. This is because data are more easily corrupted during the fac-
simile transmission. Table 2 compares the quality assessment results
of the proposed SEQM with the conventional metrics. In case of
the text documents, all the metrics with the exception of FOM pro-
vide higher indices for ‘Copy doc’ than for ‘Fax doc.’ However, in

case of the image documents, PCM and FOM provide lower indices
for ‘Copy doc’ than for ‘Fax doc,’ which is contrary to the human
perception. In contrast, SEQM provides higher indices for ‘Copy
doc.’ Note that, in the case of “Lena” in Fig. 7, edges in ‘Copy doc’
are thinned and the subjective quality is not very high. This is why
SEQM provides similar quality indices for ‘Copy doc’ and ‘Fax doc’
of “Lena.” These simulation results demonstrate that the proposed
SEQM is a promising quality metric for binary document images.

4. CONCLUSIONS

We proposed a novel edge map quality metric, called SEQM, which
employs not only a positional similarity term but also a structural
similarity term. First, SEQM computes the matching costs of each
detected edge pixel to candidate matching pixels in the ground-truth
map. Then, it determines the optimal pairs of matching pixels using
the graph-cut optimization. Finally, it sums up the matching costs of
all detected pixels to assess the quality of the edge map. Simulation
results demonstrated that the proposed SEQM provides more reliable
quality indices than the conventional quality metrics by taking into
account the structural differences between matching pixels. More-
over, we verified the practicality of the proposed SEQM on binary
document images in real world applications.
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