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ABSTRACT

An efficient coding algorithm for depth map images and videos,
based on view synthesis distortion estimation, is proposed in this
work. We first analyze how a depth error is related to a disparity
error and how the disparity vector error affects the energy spectral
density of a synthesized color video in the frequency domain. Based
on the analysis, we propose an estimation technique to predict the
view synthesis distortion without requiring the actual synthesis of in-
termediate view frames. To encode the depth information efficiently,
we employ a Lagrangian cost function to minimize the view synthe-
sis distortion subject to the constraint on a transmission bit rate. In
addition, we develop a quantization scheme for residual depth data,
which adaptively assigns bits according to block complexities. Sim-
ulation results demonstrate that the proposed depth video coding al-
gorithm provides significantly better R-D performance than conven-
tional algorithms.

Index Terms— Multi-view plus depth, depth video coding, en-
ergy spectral density, and view synthesis distortion.

1. INTRODUCTION

With advances in multimedia technologies, especially the develop-
ment of autostereoscopic 3D displays, multi-view video can support
the rendering of a scene from various viewpoints and provide 3D
perception with stereopsis [1] and motion parallax [2] cues. How-
ever, even though many efforts have been made for multi-view video
compression [3], its transmission still requires a wide bandwidth and
its bit-rate is almost linearly proportional to the number of views. To
overcome this drawback without compromising stereopsis and mo-
tion parallax cues, multi-view video plus depth (MV+D) format was
proposed [4]. An MV+D signal consists of a limited number of color
videos, e.g. 2 ~ 3 views, and their corresponding depth videos. Its
bit-rate is lower than that of a multi-view video signal because of
the limited number of views. An MV+D decoder can reconstruct ar-
bitrary views between transmitted views based on the depth image
based rendering (DIBR) [5]. DIBR converts a pixel in a view frame
into 3D world coordinates with the respective depth information and
camera parameters, and then re-projects the 3D coordinates into an-
other pixel in a different view frame. Therefore, distortions in the
depth information may lead to position errors in the view synthesis
procedure, degrading the qualities of synthesized views severely.

This work was supported partly by the Global Frontier R&D Program on
<Human-centered Interaction for Coexistence> funded by the National Re-
search Foundation of Korea grant funded by the Korean Government(MEST)
(NRF-M1AXA003-2011-0031648), and partly by the National Research
Foundation of Korea(NRF) grant funded by the Korea government(MEST)
(No. 2012-011031).

Fig. 1. A prediction structure for color videos plus their depth videos
for two views. C; and C, denote left and right color videos, while
D; and D, denote left and right depth videos.

Merkle et al. [6] showed that the distortions in depth image cod-
ing influence view synthesis performance strongly. Then, various
attempts have been made to compress depth images efficiently by
reducing view synthesis distortions instead of depth image distor-
tions. Kim et al. [7] proposed a global linear function to estimate a
view synthesis distortion from a depth distortion with two parame-
ters, which describe the characteristics of a color video. They also
proposed to skip the encoding of depth blocks when the correspond-
ing color blocks are skipped. However, the performance improve-
ment may be insignificant when the global function mismatches lo-
cal characteristics of an input video signal. In [8], they proposed a
local method to estimate a view synthesis distortion, assuming that
local characteristics of a color video is similar to those of a syn-
thesized video. Lee et al. [9] also proposed a skip mode for depth
information coding, which determines skipped depth blocks based
on the inter-view correlation between encoded color blocks. Their
algorithm may be ineffective when the inter-view correlation is low,
for example, due to illumination differences. Zhang et al. [10] pro-
posed a view synthesis distortion estimation method, assuming that,
in the frequency domain, the relation between depth distortion and
view synthesis quality is similar to that between motion distortion
and motion compensation quality [11]. But this method has limita-
tions in applications, since it was developed to select the best intra
mode only in the rate-distortion optimization in H.264/AVC.

In this work, we consider the color videos for two rectified views
and their depth videos, as shown in Fig. 1. We first encode the color
videos independently of the depth videos and then encode the depth
videos. Therefore, the reconstructed color videos are available, when
we encode the depth videos. We first derive the relationship between
a depth error and a disparity error, and then analyze how the dispar-
ity error affects the energy spectral density of a synthesized color
video. Based on the analysis, we propose a Lagrangian cost function
to select the best encoding mode in the rate-distortion (R-D) sense.
In addition, we develop an adaptive quantization scheme, which im-
proves the performance of the depth video coding by assigning a
larger amount of bits to more complicated blocks. Simulation re-
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Fig. 2. Geometry relationship between an object in a 3D world co-
ordinate system and its displacement in two 2D image coordinate
systems.

sults demonstrate that the proposed algorithm provides significantly
better R-D performance than the conventional algorithms [8, 10].
The rest of the paper is organized as follows. Section 2 analyzes
the relation between a depth error, a disparity error, and a view syn-
thesis distortion. Section 3 describes the proposed depth video cod-
ing algorithm. Section 4 evaluates the performance of the proposed
algorithm. Finally, concluding remarks are given in Section 5.

2. ANALYSIS OF DEPTH ERROR AND VIEW SYNTHESIS
DISTORTION

2.1. Depth Error vs. Disparity Error

In Fig. 2, a 3D point (X,Y, Z) in the world coordinate system is
projected onto pixels p and q in left and right images, respectively.
01 and O are the optical centers of the left and right cameras. Since
the two images are rectified, the y-position difference between p and
q is zero. Also, when the focal length is f and the baseline distance
between the cameras is b, the x-positions of p and q are given by
pe = fX/Z and ¢ = f(X — b)/Z. Therefore, the disparity vector
d; at pixel p is given by

dp =q—p=[—fb/Z,0]". )

In the MV+D format, we store the inverse of each object depth
Z with 8-bit quantization. Let Zy, be the depth of pixel p, and zp be
its inverse after the 8-bit quantization. The stored depth zp has the
range [0, 255]: O for the farthest point and 255 for the nearest point.
The relationship between Zp, and zp, is given by

L
2p = 255 x —ddar 7 )

Ztar Znear

where Zp,r and Znear denote the farthest and the nearest depth in
a scene. From Egs. (1) and (2), the disparity vector dp can be ex-
pressed as

dp= (22 (- Lyt o] 3)
P 255 Znear Zfar Zfar ’ '

Therefore, we can estimate the disparity error Adp from the depth
error Azp by

Ad, = [aAzp, 017 “4)
where o = fb(1/Znear — 1/ Ztar) /255.
2.2. Disparity Error vs. View Synthesis Distortion

Suppose that block B, from an arbitrary viewpoint v is synthesized
from block 3; from the left viewpoint [ by

B, (q) = Bi(p), S)

where B, (q) and B;(p) denote the values of pixels q in BB, and p in
By, respectively, and q = p + dp. Then, assuming that the disparity
errors of all pixels in B; equal to Ad, the distorted block B, of B,
is given by

By(q) = Bi(p + dp + Ad) = By (q + Ad). (6)

The Fourier transform decomposes a time-domain signal into its fre-
quency components. By the shifting property of the Fourier trans-
form, the translation of the time-domain signal corresponds to the
phase shifting of the frequency domain signal. In addition, from the
Parseval’s relationship, the energy of the time-domain signal is iden-
tical with that of the frequency-domain signal. Therefore, the view
synthesis distortion Dyiew of the reconstructed block B,, which is
equivalent to the energy of the difference block B, — B,, can be
computed in the frequency domain

1 o 2
Dyiew = W//Sz(w)'l—e jwTad dwidws, (7)

where w = [wi1,w2] T is the 2-D frequency vector and S (w) denotes
the energy spectral density of 3;, which is the squared magnitude
response of the Fourier transform of 3;. The Taylor series expansion
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As in [11], since the higher-order terms in Eq. (8) are insignificant
for small w” Ad, we can make the following approximation

Dvicw >~ ﬁ//é’l(w) (wTAd)z dwldwg. (9)

Considering that the y-coordinate of the disparity error is zero, we
further approximate the view synthesis distortion in Eq. (9) to

Dview :wz ||AdH2 (10)

where 1
e = W/ / Si(w)wi duw dws. an

In this work, 3; is a 4 x 4 block. We hence replace the 2-D Fourier
transform with the 4 x 4 discrete cosine transform (DCT) to compute
the energy spectral density S;(w). The coefficients of the 4 x 4 DCT
represent the signal strengths at discrete frequencies (7u/4, 7v/4),
where v = 0,1,2,3 and v = 0,1,2,3. Therefore, by modifying
Eq. (11) into a discrete form and setting w; and wo to 7u/4 and
v /4, respectively, we can approximate ¢, to

3
e = 6i4 SN H (uv)u? (12)

where H (u, v) denotes the coefficient of the 4 x 4 DCT at (u, v).
Note that, in [10], Zhang et al. estimated the view synthesis dis-
tortion assuming that both x- and y-components of disparity errors
equally contribute to the distortion. However, multi-view frames are
generally rectified to reduce the two-dimensional correspondence
problem to the one-dimensional problem. Thus, the y-components
of disparity vectors are identically zero. Therefore, the assumption is



inappropriate, and the y-components are not related to the view syn-
thesis distortion. Moreover, whereas Zhang et al.’s approximation
uses the 2-D discrete Fourier transform to compute the energy spec-
tral density, we employ the 4 x 4 DCT that is already implemented
in the H.264/AVC codec.

3. PROPOSED DEPTH VIDEO CODING

To estimate the view synthesis distortion for a 16 x 16 block caused
by depth errors, we first decompose the block into 16 sub-blocks of
size 4 x 4. Let us suppose that all pixels in a sub-block have the
same depth error. Then, from Egs. (4), (10), and (12), we obtain the
view synthesis distortion for the sub-block, given by

1
DX =, x 6 D a’|Az (13)

pEB4

In order to encode a 16 x 16 depth block, H.264/AVC employs
the Lagrangian cost for the R-D optimization, which is given by

Ji.z00 = Dactpry + A+ R (14)
where D219 and R'®*'® denote the depth distortion and the num-

ber of encoded bits for the 16 x 16 block. In this way, H.264/AVC
considers the depth distortion instead of the view synthesis distor-
tion, although the perceived video quality depends on the view syn-
thesis distortion. Therefore, based on the formula in (13), we pro-
pose a more systematic Lagrangian cost Jyiew, Which considers the

view synthesis distortion D8 as follows.
16x16 16X 16
Jview = Dview + AR (15)
where
15
16x16 Z 4x4
Dview = Dview,i
i=0

and the subscript ¢ is the index of a sub-block in the 16 x 16 block.
Furthermore, we develop an adaptive quantization scheme. No-
tice that residual depth data in a smooth region can be encoded
with a large quantization parameter (QP) with little effect on the
view synthesis distortion, whereas residual depth data in a compli-
cated region should be encoded with a smaller QP. Let ) denote
QP and Q = Qinitial + AQ, where Qinitial 1S an initial QP and
AQ = {-2,-1,0,1,2}. Then, we modify Eq. (15) to
Jview = Dyi,* + A+ (R + Raq) (16)
where Rag is the number of bits for the side information AQ.
Based on this modified Lagrangian cost function, we determine the
encoding mode, the motion vector, and the QP of a block adaptively,
so that we minimize the distortion subject to the constraint on the
limited bit budget.

4. SIMULATION RESULTS

We evaluate the performance of the proposed algorithm on four test
sequences, which are listed in Table 1. These test sequences were
recently released for the 3D video coding exploration experiments.
The depth videos of these sequences are estimated by the depth
estimation reference software [12], and then both color and depth
videos are encoded by the JMVC 6.0 multi-view coding reference
software [13] with the prediction structure in Fig. 1. Four quanti-
zation parameters were used: 27, 32, 37, and 42. An intermediate

Table 1. Properties of four test sequences.

Frame Frame View number

Sequence Size Rate (fps) | Left | Right
Balloons 1024 x 768 30 3 5
BookArrival | 1024 x 768 30 10 8
Lovebirdl 1024 x 768 30 6 8
Pantomime | 1280 x 960 30 39 41

view is synthesized by the view synthesis reference software [12] us-
ing color videos and the corresponding depth videos. Each distorted
intermediate view synthesized from reconstructed color and depth
videos is compared with the lossless intermediate view synthesized
from uncompressed color and depth videos. PSNR is used as the
quality metric. We compare the proposed algorithm with three con-
ventional depth video coding algorithms: H.264/AVC, Kim et al.’s
algorithm [8], and Zhang er al.’s algorithm [10]. Note that we apply
Zhang et al.’s algorithm to select the inter mode as well as the intra
mode, even though it was originally developed for the intra mode
decision only.

Fig. 3 compares the rate-distortion curves of the proposed algo-
rithm and the conventional algorithms on all test sequences, where
horizontal and vertical axes denote the bit-rate for a depth video
sequence and the average PSNR over all synthesized intermediate
frames, respectively. Method I and Method II mean the proposed al-
gorithm without and with the adaptive quantization scheme. We ob-
serve that Method I provides significantly better PSNR performance
than the conventional algorithms. For example, on the “Balloons”
sequence, Method I provides about 2.6 and 3.4 dB better PSNR’s
than Kim et al.’s algorithm and Zhang et al.’s algorithm, respec-
tively. Although only x-components of disparity vectors are cor-
rupted by depth distortions, Zhang et al.’s algorithm considers the
energy spectral density due to the errors in both = and y directions.
On the contrary, the proposed algorithm considers the errors in x
direction only. Therefore, the proposed algorithm estimates view
synthesis distortions more accurately and outperforms Zhang et al.’s
algorithm in terms of the R-D performance. Moreover, Method II
improves the performance even further by assigning a larger amount
of bits to blocks with higher energy spectral densities.

Table 2 provides the Bjontegarrd evaluation results to mea-
sure the average bit-rate reduction or PSNR increase, when the
H.264/AVC standard is used as the benchmark. We see that Method
I reduces the average bit-rate by about 74.9% or increases the av-
erage PSNR by about 4.89 dB. Furthermore, Method II reduces the
average bit-rate by 81.0% or increases the average PSNR by 6.48
dB. On the other hand, Kim e? al.’s algorithm and Zhang et al.’s al-
gorithm reduce the average bit-rate by 54.9% and 63.7% or increases
the average PSNR by 3.29 dB and 3.03 dB, respectively. These sim-
ulation results indicate that the proposed algorithm outperforms the
conventional algorithms by a large margin.

5. CONCLUSIONS

We proposed the R-D optimized depth video coding algorithm and
the adaptive quantization scheme, based on the view synthesis dis-
tortion estimation. We first derived the relationship between a depth
error and a disparity error, and analyzed how the disparity error af-
fects a view synthesis distortion in the frequency domain. Through
the analysis, we showed that the view synthesis distortion can be esti-
mated from the energy spectral density of a color video signal. Then,
we proposed the Lagrangian cost function to minimize the view syn-
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Fig. 3. Comparison of the R-D curves of the proposed algorithm with H.264/AVC, Kim et al.’s algorithm [8], and Zhang et al.’s algorithm [10]:
(a) “Balloons,” (b) “BookArrival,” (c) “Lovebird1l,” and (d) “Pantomime” sequences.

Table 2. The average bit rate and PSNR differences from the benchmark, which is the H.264/AVC standard. A negative value means a bit
rate decrement in comparison with the benchmark, whereas a positive value means a PSNR increment.

Kim et al. [8] Zhang et al. [10] Method 1 Method II
Sequences ABits [%] [ APSNR [dB] | ABits [%] [ APSNR [dB] | ABits [%] [ APSNR [dB] | ABits [%] [ APSNR [dB
Balloons -52.14 2.78 -48.17 1.96 -74.11 5.40 -78.12 5.72
BookArrival -60.76 3.07 -58.85 2.52 -74.48 4.98 -77.87 5.50
Lovebird1 -22.45 0.72 -64.46 2.85 -68.06 344 -72.98 3.94
Pantomime -84.42 6.58 -72.98 3.94 -81.75 5.74 -94.85 10.79

thesis distortion subject to the constraint on a bit-rate. Moreover,
we developed the adaptive quantization scheme to improve the R-
D performance further by assigning a larger amount of bits to more
complicated blocks. Simulation results confirmed that the proposed
algorithm provides much better R-D performance than the conven-
tional algorithms [8, 10].
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